Skip to main content

Guide to Sports Vision Training


Vision is more than 20/20. Sports vision training combines traditional vision training tools with the latest technology and sport specific drills. Athletes typically start with an evaluation to analyze their performance and to highlight strengths and areas of opportunity. Training programs can be customized to the athlete, sport, and position for maximum effectiveness.

Just as strength training helps an athlete maximize speed, strength and agility, sports vision training can help an athlete react faster, see more, and improve their awareness. The ability to make split second decisions can be the difference in winning and losing.

The foundation of any training should focus on sport specific training. As an athlete looks to progress, strength and conditioning is the next step followed by nutrition and recovery. Athletes can then start adding in other elements, such as sports vision training, to enhance performance.

Any athlete can improve their eye hand coordination, reaction times, decision making, and concentration. Sports vision training can be completed as a focused session, integrated within a strength session, or added to sport specific drills.


Athletes who have completed performance vision training remark that the game seems to “slow down”. They can make better decisions and increase awareness within training and competition. Athletes are better able to focus, making practice and training more efficient. In games and competitions, athletes can get into the zone where they are working at an optimal cognitive and physical level.


Sports vision training allows athletes to see faster, to react faster, and to play faster. What do all athletes want to achieve? All athletes want to achieve success. Athletes know the importance of strength, speed, endurance, and agility in their training. Visual and cognitive training are frequently overlooked as athletes seek a performance edge. Once reserved for professional athletes, new technology has made this training available for athletes of all ages and skill levels.


The Performance 20/20 training philosophy is: Assess. Analyze. Achieve. We evaluate specific visual categories along with recommending vision correction if needed. We constantly analyze results in the context of training progression and sport. Ultimately, we expect athletes to achieve optimal performance when combining sports vision with consistent physical training.

The most important action that you can take for optimal vision is having a comprehensive eye exam with an optometrist. Most vision issues will go undiagnosed and can be very meaningful for sports performance. Vision correction through contact lenses or glasses may be appropriate. Sport specific and protective eye wear may also be beneficial depending on the athlete, sport, and position.

Performance 20/20’s approach to training follows a periodized structure similar to strength training and other sports. The drills move from simple to complex incorporating balance, cognitive challenges, and sport specific movements.

A training session is composed of exercises, intervals, and sets. The focus of the training is on elements of sports vision, but we also include cognitive challenges to increase focus. As with any training program, we would recommend a degree of flexibility. Training should be adjusted based on the athlete as needed for variation of drills, time constraints, competitions, and skill progression.

Sports vision training is also excellent for preparation or for warm up on the day of competition. A series of drills can be easily integrated with an athlete’s pregame routine.


Dynamic Visual Acuity

Dynamic visual acuity helps athletes see clearly while they are in motion, or helps them track moving objects better.

Visual Processing Speed

Visual processing speed allows athletes to “see faster”, make better decisions, and react quicker.

Eye Hand Coordination

Eye hand coordination is the simultaneous control of eye and hand movements.


Accommodation is the flexibility of the visual system. Flexibility equips an athlete to change focus from near to far and far to near.

Depth Perception

Depth perception is the location, speed and distance of an object, and this is critical in sports and performance.

Multiple Object Tracking

Multiple object tracking is the ability for an athlete to split their attention, and follow moving targets in space. This can be a ball, puck, teammates or opponents.

Visual Capture

Visual capture, or working memory, is the ability to take a “mental snapshot” of the field, ice or arena, and make mental and physical decisions based on this.


Anticipation is the skill of being able to “think ahead” and make a decision. This can include visual capture and making decisions based off of opponents body language.

Eye Tracking

Eye tracking is the ability of an athletes eyes to make accurate, precise movements. The more efficient the eye movement, the better the information the brain receives, giving the athlete the quickest and most accurate motor response.

Peripheral Awareness

Peripheral awareness is being able to identify objects in our side vision. Training programs work with athletes to improve their awareness and have a wider view of the field.

Spatial Awareness

Spatial awareness is the ability to know where you are in relation to other players, objects and location on the field.

Convergence + Divergence

Convergence and divergence are the coordinated abilities of the eyes to work together to follow an object as it moves farther or closer.

Concentration + Focus

Concentration, focus, and attention are essential skills for athletes to develop in all sports. Minimizing distractions such as music, crowds and inner thoughts allow the athlete to be present.


Technology is constantly evolving for sports vision training and has also become more accessible to athletes. The equipment for sports vision training can range from commercial technology to traditional vision training tools. We maintain a long list of apps, gear, and equipment. Check out the 'Shop' and 'Gear' sections on the website.



Baseball + Softball

Baseball and softball players need exceptional dynamic visual acuity, hand eye coordination, contrast sensitivity and reaction time. Making a decision to swing, to track a ball, and to be aware of where players are in the field are all trainable skills that can dramatically improve performance.


Basketball is a sport where multiple object tracking, depth perception, dynamic visual acuity, anticipation and spatial awareness are needed for optimal performance.


Esports athletes must continuously adapt to fast moving targets and objects and make fast decisions. These athletes also must have sustained focus, attention, and excellent anticipation.

Football (American)

Football players, dependent on position, need specific visual skills for optimal performance. Quarterbacks need to scan the field, recognize targets, anticipate movements and make precise visual and motor reactions. Linebackers need excellent spatial awareness, reaction time and tracking. Receivers need excellent dynamic visual acuity, tracking, peripheral awareness and eye hand coordination to run their routes and make plays.


Hockey players are often moving at fast speeds and need to track both a puck and other players while they are in motion. They need exceptional reaction time, anticipation, peripheral vision and concentration to block out the noises that can be amplified in a rink.


Lacrosse athletes need exceptional hand eye coordination, depth perception, contrast sensitivity, tracking, peripheral awareness and visual processing speed. Sports where athletes wear a helmet can often limit peripheral vision, so training these athletes to increase awareness is extremely helpful.

Soccer / Football

Soccer / football players often have superior foot eye coordination combined with dynamic visual acuity and peripheral awareness. Goalies also need exceptional hand eye coordination! Multiple object tracking is important for both tracking the ball and players on the field.

Tennis / Squash / Paddle

Racquet sports such as tennis, squash, and paddle are very dynamic. They incorporate multiple sports vision skills, including contrast sensitivity, dynamic visual acuity, accommodation and convergence and hand eye coordination.


International Sports Vision Association
Read More
Duke University – Sports Vision Center
Read More
American Optometric Association – Sports & Performance Vision
Read More
All About Vision – Guide to Sports Vision
Read More – Sports Vision
Read More


1. Poltavski D, Biberdorf D. The role of visual perception measures used in sports
vision programmes in predicting actual game performance in Division I collegiate
hockey players. J Sports Sci. 2015;33(6):597-608. doi:
10.1080/02640414.2014.951952. Epub 2014 Aug 21. PubMed [citation] PMID: 25142869

2. Hitzeman SA, Beckerman SA. What the literature says about sports vision. Optom
Clin. 1993;3(1):145-69. Review. PubMed [citation] PMID: 8324322

3. Gao Y, Chen L, Yang SN, Wang H, Yao J, Dai Q, Chang S. Contributions of
Visuo-oculomotor Abilities to Interceptive Skills in Sports. Optom Vis Sci. 2015
Jun;92(6):679-89. doi: 10.1097/OPX.0000000000000599. PubMed [citation] PMID:

4. Clark JF, Ellis JK, Bench J, Khoury J, Graman P. High-performance vision training
improves batting statistics for University of Cincinnati baseball players. PLoS
One. 2012;7(1):e29109. doi: 10.1371/journal.pone.0029109. Epub 2012 Jan 19.
PubMed [citation] PMID: 22276103, PMCID: PMC3261847

5. Erickson GB, Citek K, Cove M, Wilczek J, Linster C, Bjarnason B, Langemo N.
Reliability of a computer-based system for measuring visual performance skills.
Optometry. 2011 Sep;82(9):528-42. doi: 10.1016/j.optm.2011.01.012. Epub 2011 Jun
25. PubMed [citation] PMID: 21705283

6. Krzepota J, Zwierko T, Puchalska-Niedbał L, Markiewicz M, Florkiewicz B, Lubiński
W. The Efficiency of a Visual Skills Training Program on Visual Search
Performance. J Hum Kinet. 2015 Jul 10;46:231-40. doi: 10.1515/hukin-2015-0051.
eCollection 2015 Jun 27. PubMed [citation] PMID: 26240666, PMCID: PMC4519214

Aug;121(1):57-79. doi: 10.2466/22.25.PMS.121c11x0. Epub 2015 Jun 30. PubMed
[citation] PMID: 26126135

8. Clark JF, Colosimo A, Ellis JK, Mangine R, Bixenmann B, Hasselfeld K, Graman P,
Elgendy H, Myer G, Divine J. Vision training methods for sports concussion
mitigation and management. J Vis Exp. 2015 May 5;(99):e52648. doi: 10.3791/52648.
PubMed [citation] PMID: 25992878, PMCID: PMC4542464

9. Abernethy B, Wood JM. Do generalized visual training programmes for sport really
work? An experimental investigation. J Sports Sci. 2001 Mar;19(3):203-22. PubMed
[citation] PMID: 11256825

10. Rawstron JA, Burley CD, Elder MJ. A systematic review of the applicability and
efficacy of eye exercises. J Pediatr Ophthalmol Strabismus. 2005
Mar-Apr;42(2):82-8. Review. PubMed [citation] PMID: 15825744

11. Barrett BT. A critical evaluation of the evidence supporting the practice of
behavioural vision therapy. Ophthalmic Physiol Opt. 2009 Jan;29(1):4-25. doi:
10.1111/j.1475-1313.2008.00607.x. Review. PubMed [citation] PMID: 19154276

12. Li R, Polat U, Makous W, Bavelier D. Enhancing the contrast sensitivity function
through action video game training. Nat Neurosci. 2009 May;12(5):549-51. doi:
10.1038/nn.2296. Epub 2009 Mar 29. PubMed [citation] PMID: 19330003, PMCID:

13. Gray R. How do batters use visual, auditory, and tactile information about the
success of a baseball swing? Res Q Exerc Sport. 2009 Sep;80(3):491-501. PubMed
[citation] PMID: 19791635

14. Le Runigo C, Benguigui N, Bardy BG. Visuo-motor delay, information-movement
coupling, and expertise in ball sports. J Sports Sci. 2010 Feb;28(3):327-37. doi:
10.1080/02640410903502782. PubMed [citation] PMID: 20131141

15. Zemková E, Hamar D. The effect of 6-week combined agility-balance training on
neuromuscular performance in basketball players. J Sports Med Phys Fitness. 2010
Sep;50(3):262-7. PubMed [citation] PMID: 20842085

16. Zimmerman AB, Lust KL, Bullimore MA. Visual acuity and contrast sensitivity
testing for sports vision. Eye Contact Lens. 2011 May;37(3):153-9. doi:
10.1097/ICL.0b013e31820d12f4. Review. PubMed [citation] PMID: 21378574

17. Ciuffreda KJ. Simple eye-hand reaction time in the retinal periphery can be
reduced with training. Eye Contact Lens. 2011 May;37(3):145-6. doi:
10.1097/ICL.0b013e31820ca4af. Review. PubMed [citation] PMID: 21378575

18. Schwab S, Memmert D. The impact of a sports vision training program in youth
field hockey players. J Sports Sci Med. 2012 Dec 1;11(4):624-31. eCollection
2012. PubMed [citation] PMID: 24150071, PMCID: PMC3763307

19. Appelbaum LG, Cain MS, Schroeder JE, Darling EF, Mitroff SR. Stroboscopic visual
training improves information encoding in short-term memory. Atten Percept
Psychophys. 2012 Nov;74(8):1681-91. doi: 10.3758/s13414-012-0344-6. PubMed
[citation] PMID: 22810559

20. Uchida Y, Kudoh D, Higuchi T, Honda M, Kanosue K. Dynamic visual acuity in
baseball players is due to superior tracking abilities. Med Sci Sports Exerc.
2013 Feb;45(2):319-25. doi: 10.1249/MSS.0b013e31826fec97. PubMed [citation] PMID:

21. Ellison PH, Sparks SA, Murphy PN, Carnegie E, Marchant DC. Determining eye-hand
coordination using the sport vision trainer: an evaluation of test-retest
reliability. Res Sports Med. 2014;22(1):36-48. doi: 10.1080/15438627.2013.852090.
PubMed [citation] PMID: 24392770

22. Put K, Wagemans J, Spitz J, Gallardo MA, Williams AM, Helsen WF. The use of 2D
and 3D information in a perceptual-cognitive judgement task. J Sports Sci.
2014;32(18):1688-97. doi: 10.1080/02640414.2014.912760. Epub 2014 May 23. PubMed
[citation] PMID: 24857384

23. Moradi J, Movahedi A, Salehi H. Specificity of learning a sport skill to the
visual condition of acquisition. J Mot Behav. 2014;46(1):17-23. doi:
10.1080/00222895.2013.838935. Epub 2013 Oct 28. PubMed [citation] PMID: 24164634

24. Hammami R, Behm DG, Chtara M, Ben Othman A, Chaouachi A. Comparison of static
balance and the role of vision in elite athletes. J Hum Kinet. 2014 Jul
8;41:33-41. doi: 10.2478/hukin-2014-0030. eCollection 2014 Jun 28. PubMed
[citation] PMID: 25114729, PMCID: PMC4120462

25. Appelbaum LG, Schroeder JE, Cain MS, Mitroff SR. Improved Visual Cognition
through Stroboscopic Training. Front Psychol. 2011 Oct 28;2:276. doi:
10.3389/fpsyg.2011.00276. eCollection 2011. PubMed [citation] PMID: 22059078,
PMCID: PMC3203550

26. Cain MS, Dunsmoor JE, LaBar KS, Mitroff SR. Anticipatory anxiety hinders
detection of a second target in dual-target search. Psychol Sci. 2011
Jul;22(7):866-71. doi: 10.1177/0956797611412393. Epub 2011 Jun 13. PubMed
[citation] PMID: 21670427

27. Clark K, Appelbaum LG, van den Berg B, Mitroff SR, Woldorff MG. Improvement in
visual search with practice: mapping learning-related changes in neurocognitive
stages of processing. J Neurosci. 2015 Apr 1;35(13):5351-9. doi:
10.1523/JNEUROSCI.1152-14.2015. PubMed [citation] PMID: 25834059, PMCID:

28. Wang L, Krasich K, Bel-Bahar T, Hughes L, Mitroff SR, Appelbaum LG. Mapping the
structure of perceptual and visual-motor abilities in healthy young adults. Acta
Psychol (Amst). 2015 May;157:74-84. doi: 10.1016/j.actpsy.2015.02.005. Epub 2015
Mar 5. PubMed [citation] PMID: 25747573

29. Zwierko T, Puchalska-Niedbał L, Krzepota J, Markiewicz M, Woźniak J, Lubiński W.
The Effects of Sports Vision Training on Binocular Vision Function in Female
University Athletes. J Hum Kinet. 2015 Dec 30;49:287-96. doi:
10.1515/hukin-2015-0131. eCollection 2015 Dec 22. PubMed [citation] PMID:
26925183, PMCID: PMC4723179

30. Gong A, Liu J, Jiang C, Fu Y. Rifle Shooting Performance Correlates with
Electroencephalogram Beta Rhythm Network Activity during Aiming. Comput Intell
Neurosci. 2018 Nov 11;2018:4097561. doi: 10.1155/2018/4097561. eCollection 2018.
PubMed [citation] PMID: 30534150, PMCID: PMC6252210

31. Wilson MR, Webb A, Wylie LJ, Vine SJ. The quiet eye is sensitive to
exercise-induced physiological stress. Prog Brain Res. 2018;240:35-52. doi:
10.1016/bs.pbr.2018.08.008. Epub 2018 Sep 27. PubMed [citation] PMID: 30390839

32. Murr D, Feichtinger P, Larkin P, O’Connor D, Höner O. Psychological talent
predictors in youth soccer: A systematic review of the prognostic relevance of
psychomotor, perceptual-cognitive and personality-related factors. PLoS One. 2018
Oct 15;13(10):e0205337. doi: 10.1371/journal.pone.0205337. eCollection 2018.
PubMed [citation] PMID: 30321221, PMCID: PMC6188900

33. Hosseini SMH, Bruno JL, Baker JM, Gundran A, Harbott LK, Gerdes JC, Reiss AL.
Neural, physiological, and behavioral correlates of visuomotor cognitive load.
Sci Rep. 2017 Aug 18;7(1):8866. doi: 10.1038/s41598-017-07897-z. PubMed
[citation] PMID: 28821719, PMCID: PMC5562732

34. Sensorimotor abilities predict on-field performance in professional baseball.
Burris K, Vittetoe K, Ramger B, Suresh S, Tokdar ST, Reiter JP, Appelbaum LG.
Scientific Reports. 2018 Jan 8; 8: 116
PMC [article] PMCID: PMC5758703, PMID: 29311675, DOI: 10.1038/s41598-017-18565-7

35. Palidis DJ, Wyder-Hodge PA, Fooken J, Spering M. Distinct eye movement patterns
enhance dynamic visual acuity. PLoS One. 2017 Feb 10;12(2):e0172061. doi:
10.1371/journal.pone.0172061. eCollection 2017. PubMed [citation] PMID: 28187157,
PMCID: PMC5302791

36. Gallaway M, Scheiman M, Mitchell GL. Vision Therapy for Post-Concussion Vision
Disorders. Optom Vis Sci. 2017 Jan;94(1):68-73. doi:
10.1097/OPX.0000000000000935. PubMed [citation] PMID: 27505624

37. Seegelke C, Güldenpenning I, Dettling J, Schack T. Visuomotor priming of action
preparation and motor programming is similar in visually guided and memory-guided
actions. Neuropsychologia. 2016 Oct;91:1-8. doi:
10.1016/j.neuropsychologia.2016.07.033. Epub 2016 Jul 28. PubMed [citation] PMID:

38. Huijgen BC, Leemhuis S, Kok NM, Verburgh L, Oosterlaan J, Elferink-Gemser MT,
Visscher C. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged
13 to 17 Years. PLoS One. 2015 Dec 11;10(12):e0144580. doi:
10.1371/journal.pone.0144580. eCollection 2015. PubMed [citation] PMID: 26657073,
PMCID: PMC4691195

39. Chermann JF, Romeas T, Marty F, Faubert J. Perceptual-cognitive three-dimensional
multiple-object tracking task can help the monitoring of sport-related
concussion. BMJ Open Sport Exerc Med. 2018 Oct 1;4(1):e000384. doi:
10.1136/bmjsem-2018-000384. eCollection 2018. PubMed [citation] PMID: 30305922,
PMCID: PMC6173252

40. Tullo D, Guy J, Faubert J, Bertone A. Training with a three-dimensional multiple
object-tracking (3D-MOT) paradigm improves attention in students with a
neurodevelopmental condition: a randomized controlled trial. Dev Sci. 2018
Nov;21(6):e12670. doi: 10.1111/desc.12670. Epub 2018 Apr 30. PubMed [citation]
PMID: 29707864

41. Parsons B, Magill T, Boucher A, Zhang M, Zogbo K, Bérubé S, Scheffer O,
Beauregard M, Faubert J. Enhancing Cognitive Function Using Perceptual-Cognitive
Training. Clin EEG Neurosci. 2016 Jan;47(1):37-47. doi: 10.1177/1550059414563746.
Epub 2014 Dec 30. PubMed [citation] PMID: 25550444

42. Broadbent DP, Causer J, Williams AM, Ford PR. Perceptual-cognitive skill training
and its transfer to expert performance in the field: future research directions.
Eur J Sport Sci. 2015;15(4):322-31. doi: 10.1080/17461391.2014.957727. Epub 2014
Sep 24. Review. PubMed [citation] PMID: 25252156

43. Hülsdünker T, Rentz C, Ruhnow D, Käsbauer H, Strüder HK, Mierau A. The Effect of
4-Week Stroboscopic Training on Visual Function and Sport-Specific Visuomotor
Performance in Top-Level Badminton Players. Int J Sports Physiol Perform. 2019
Mar 1;14(3):343-350. doi: 10.1123/ijspp.2018-0302. Epub 2019 Feb 6. PubMed
[citation] PMID: 30160560

44. Smith TQ, Mitroff SR. Stroboscopic Training Enhances Anticipatory Timing. Int J
Exerc Sci. 2012 Oct 15;5(4):344-353. eCollection 2012. PubMed [citation] PMID:
27182391, PMCID: PMC4738880

45. Hadlow SM, Panchuk D, Mann DL, Portus MR, Abernethy B. Modified perceptual
training in sport: A new classification framework. J Sci Med Sport. 2018
Sep;21(9):950-958. doi: 10.1016/j.jsams.2018.01.011. Epub 2018 Feb 3. Review.
PubMed [citation] PMID: 29433921

46. Mohammadi SF, Aghazade Amiri M, Naderifar H, Rakhshi E, Vakilian B, Ashrafi E,
Behesht-Nejad AH. Vision Examination Protocol for Archery Athletes Along With an
Introduction to Sports Vision. Asian J Sports Med. 2016 Mar 8;7(1):e26591. doi:
10.5812/asjsm.26591. eCollection 2016 Mar. PubMed [citation] PMID: 27217923,
PMCID: PMC4870828

47. Melcher MH, Lund DR. Sports vision and the high school student athlete. J Am
Optom Assoc. 1992 Jul;63(7):466-74. PubMed [citation] PMID: 1506610

48. Stroboscopic Training Enhances Anticipatory Timing.
International Journal of Exercise Science. 2012 Oct 15; 5(4): 344-353
PMC [article] PMCID: PMC4738880, PMID: 27182391

49. Laby DM, Kirschen DG, Govindarajulu U, DeLand P. The Hand-eye Coordination of
Professional Baseball Players: The Relationship to Batting. Optom Vis Sci. 2018
Jul;95(7):557-567. doi: 10.1097/OPX.0000000000001239. PubMed [citation] PMID:

50. Lebeau JC, Liu S, Sáenz-Moncaleano C, Sanduvete-Chaves S, Chacón-Moscoso S,
Becker BJ, Tenenbaum G. Quiet Eye and Performance in Sport: A Meta-Analysis. J
Sport Exerc Psychol. 2016 Oct;38(5):441-457. doi: 10.1123/jsep.2015-0123. Epub
2016 Sep 16. Review. PubMed [citation] PMID: 27633956

51. Takeuchi T, Inomata K. Visual search strategies and decision making in baseball
batting. Percept Mot Skills. 2009 Jun;108(3):971-80. Erratum in: Percept Mot
Skills. 2013 Dec;117(3):983. Percept Mot Skills. 2015 Apr;120(2):671. Percept Mot
Skills. 2017 Oct;124(5):1044-1045. PubMed [citation] PMID: 19725330

52. Abernethy B. Training the visual-perceptual skills of athletes. Insights from the
Study of Motor Expertise. Am J Sports Med. 1996;24(6 Suppl):S89-92. No abstract
available. PubMed [citation] PMID: 8947438

53. Abrams RA, Meyer DE, Kornblum S. Speed and accuracy of saccadic eye movements:
characteristics of impulse variability in the oculomotor system. J Exp Psychol
Hum Percept Perform. 1989 Aug;15(3):529-43. PubMed [citation] PMID: 2527960

54. Cochrane GD, Christy JB, Almutairi A, Busettini C, Swanson MW, Weise KK.
Visuo-oculomotor Function and Reaction Times in Athletes with and without
Concussion. Optom Vis Sci. 2019 Apr;96(4):256-265. doi:
10.1097/OPX.0000000000001364. PubMed [citation] PMID: 30907863, PMCID: PMC6445703

55. Qiu F, Pi Y, Liu K, Zhu H, Li X, Zhang J, Wu Y. Neural efficiency in basketball
players is associated with bidirectional reductions in cortical activation and
deactivation during multiple-object tracking task performance. Biol Psychol. 2019
May;144:28-36. doi: 10.1016/j.biopsycho.2019.03.008. Epub 2019 Mar 19. PubMed
[citation] PMID: 30902565

56. Mallek M, Benguigui N, Dicks M, Thouvarecq R. Sport expertise in
perception-action coupling revealed in a visuomotor tracking task. Eur J Sport
Sci. 2017 Nov;17(10):1270-1278. doi: 10.1080/17461391.2017.1375014. Epub 2017 Sep
29. PubMed [citation] PMID: 28961061

57. Teques P, Araújo D, Seifert L, Del Campo VL, Davids K. The resonant system:
Linking brain-body-environment in sport performance(☆). Prog Brain Res.
2017;234:33-52. doi: 10.1016/bs.pbr.2017.06.001. Epub 2017 Jul 17. Review. PubMed
[citation] PMID: 29031470

58. Klostermann A, Panchuk D, Farrow D. Perception-action coupling in complex game
play: Exploring the quiet eye in contested basketball jump shots. J Sports Sci.
2018 May;36(9):1054-1060. doi: 10.1080/02640414.2017.1355063. Epub 2017 Jul 14.
PubMed [citation] PMID: 28707506

59. Applegate RA, Applegate RA. Set shot shooting performance and visual acuity in
basketball. Optom Vis Sci. 1992 Oct;69(10):765-8. PubMed [citation] PMID: 1436997

60. Bridgemen B, Kirch M, Sperling A. Segregation of cognitive and motor aspects of
visual function using induced motion. Percept Psychophys. 1981 Apr;29(4):336-42.
No abstract available. PubMed [citation] PMID: 7279556

61. Bullier J. Integrated model of visual processing. Brain Res Brain Res Rev. 2001
Oct;36(2-3):96-107. Review. PubMed [citation] PMID: 11690606

62. Carlton LG. Processing visual feedback information for movement control. J Exp
Psychol Hum Percept Perform. 1981 Oct;7(5):1019-30. PubMed [citation] PMID:

63. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber
MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. A common network of
functional areas for attention and eye movements. Neuron. 1998 Oct;21(4):761-73.
PubMed [citation] PMID: 9808463

64. Acquisition of Motor and Cognitive Skills through Repetition in Typically
Developing Children.
Magallón S, Narbona J, Crespo-Eguílaz N.
PLoS ONE. 2016 Jul 6; 11(7): e0158684
PMC [article] PMCID: PMC4934913, PMID: 27384671, DOI: 10.1371/journal.pone.0158684

65. Guitton D, Volle M. Gaze control in humans: eye-head coordination during
orienting movements to targets within and beyond the oculomotor range. J
Neurophysiol. 1987 Sep;58(3):427-59. PubMed [citation] PMID: 3655876

66. Vickers JN, Vandervies B, Kohut C, Ryley B. Quiet eye training improves accuracy
in basketball field goal shooting. Prog Brain Res. 2017;234:1-12. doi:
10.1016/bs.pbr.2017.06.011. Epub 2017 Aug 12. Review. PubMed [citation] PMID:

67. Stone JA, Maynard IW, North JS, Panchuk D, Davids K. Temporal and spatial
occlusion of advanced visual information constrains movement (re)organization in
one-handed catching behaviors. Acta Psychol (Amst). 2017 Mar;174:80-88. doi:
10.1016/j.actpsy.2017.01.009. Epub 2017 Feb 11. PubMed [citation] PMID: 28196753

68. Helsen WF, Elliott D, Starkes JL, Ricker KL. Temporal and spatial coupling of
point of gaze and hand movements in aiming. J Mot Behav. 1998 Sep;30(3):249-59.
doi: 10.1080/00222899809601340. PubMed [citation] PMID: 20037082

69. Panchuk D, Vickers JN. Using spatial occlusion to explore the control strategies
used in rapid interceptive actions: Predictive or prospective control? J Sports
Sci. 2009 Oct;27(12):1249-60. doi: 10.1080/02640410903156449. PubMed [citation]
PMID: 20213920

70. Benito Santos A, Theron R, Losada A, Sampaio JE, Lago-Peñas C. Data-Driven Visual
Performance Analysis in Soccer: An Exploratory Prototype. Front Psychol. 2018 Dec
5;9:2416. doi: 10.3389/fpsyg.2018.02416. eCollection 2018. PubMed [citation]
PMID: 30568611, PMCID: PMC6290627

71. Martell SG, Vickers JN. Gaze characteristics of elite and near-elite athletes in
ice hockey defensive tactics. Hum Mov Sci. 2004 Apr;22(6):689-712. PubMed
[citation] PMID: 15063049

72. Henderson JM. Human gaze control during real-world scene perception. Trends Cogn
Sci. 2003 Nov;7(11):498-504. PubMed [citation] PMID: 14585447

73. Kowler E, Anderson E, Dosher B, Blaser E. The role of attention in the
programming of saccades. Vision Res. 1995 Jul;35(13):1897-916. PubMed [citation]
PMID: 7660596

74. Gredebäck G, Falck-Ytter T. Eye Movements During Action Observation. Perspect
Psychol Sci. 2015 Sep;10(5):591-8. doi: 10.1177/1745691615589103. Review. PubMed
[citation] PMID: 26385998, PMCID: PMC4576502

75. Brenner E, Smeets JBJ. Accumulating visual information for action. Prog Brain
Res. 2017;236:75-95. doi: 10.1016/bs.pbr.2017.07.007. Epub 2017 Sep 8. Review.
PubMed [citation] PMID: 29157419

76. Land MF, McLeod P. From eye movements to actions: how batsmen hit the ball. Nat
Neurosci. 2000 Dec;3(12):1340-5. PubMed [citation] PMID: 11100157

77. Lee DN, Young DS, Reddish PE, Lough S, Clayton TM. Visual timing in hitting an
accelerating ball. Q J Exp Psychol A. 1983 May;35(Pt 2):333-46. No abstract
available. PubMed [citation] PMID: 6571315

78. Eye-Tracking Technology and the Dynamics of Natural Gaze Behavior in Sports: A
Systematic Review of 40 Years of Research.
Kredel R, Vater C, Klostermann A, Hossner EJ.
Frontiers in Psychology. 2017 Oct 17; 8: 1845
PMC [article] PMCID: PMC5651090, PMID: 29089918, DOI: 10.3389/fpsyg.2017.01845

79. The Perceptual Cognitive Processes Underpinning Skilled Performance in
Volleyball: Evidence From Eye-Movements and Verbal Reports of Thinking Involving
an in Situ Representative Task.
Afonso J, Garganta J, Mcrobert A, Williams AM, Mesquita I.
Journal of Sports Science & Medicine. 2012 Jun 1; 11(2): 339-345
PMC [article] PMCID: PMC3737875, PMID: 24149208

80. Roca A, Ford PR, McRobert AP, Williams AM. Perceptual-cognitive skills and their
interaction as a function of task constraints in soccer. J Sport Exerc Psychol.
2013 Apr;35(2):144-55. PubMed [citation] PMID: 23535973

81. Keep Your Eye on the Ball; the Impact of an Anticipatory Fixation During
Successful and Unsuccessful Soccer Penalty Kicks.
Timmis MA, Piras A, van Paridon KN.
Frontiers in Psychology. 2018 Oct 31; 9: 2058
PMC [article] PMCID: PMC6220034, PMID: 30429808, DOI: 10.3389/fpsyg.2018.02058

82. Savelsbergh GJ, Van der Kamp J, Williams AM, Ward P. Anticipation and visual
search behaviour in expert soccer goalkeepers. Ergonomics. 2005 Sep 15-Nov
15;48(11-14):1686-97. PubMed [citation] PMID: 16338733

83. van Maarseveen MJJ, Oudejans RRD, Mann DL, Savelsbergh GJP. Perceptual-cognitive
skill and the in situ performance of soccer players. Q J Exp Psychol (Hove). 2018
Feb;71(2):455-470. doi: 10.1080/17470218.2016.1255236. Epub 2018 Jan 1. PubMed
[citation] PMID: 27801629, PMCID: PMC6159770

84. Poulter DR, Jackson RC, Wann JP, Berry DC. The effect of learning condition on
perceptual anticipation, awareness, and visual search. Hum Mov Sci. 2005
Jun;24(3):345-61. PubMed [citation] PMID: 16084616

85. De Lucia PR, Cochran EL. Perceptual information for batting can be extracted
throughout a ball’s trajectory. Percept Mot Skills. 1985 Aug;61(1):143-50. PubMed
[citation] PMID: 4047874

86. Kato T, Fukuda T. Visual search strategies of baseball batters: eye movements
during the preparatory phase of batting. Percept Mot Skills. 2002
Apr;94(2):380-6. PubMed [citation] PMID: 12027326

87. Broadbent DP, Ford PR, O’Hara DA, Williams AM, Causer J. The effect of a
sequential structure of practice for the training of perceptual-cognitive skills
in tennis. PLoS One. 2017 Mar 29;12(3):e0174311. doi:
10.1371/journal.pone.0174311. eCollection 2017. PubMed [citation] PMID: 28355263,
PMCID: PMC5371311

88. Vickers JN, Causer J, Stuart M, Little E, Dukelow S, Lavangie M, Nigg S,
Arsenault G, Morton B, Scott M, Emery C. Effect of the look-up line on the gaze
and head orientation of elite ice hockey players. Eur J Sport Sci. 2017
Feb;17(1):109-117. Epub 2016 Aug 30. PubMed [citation] PMID: 27577327

89. Panchuk D, Vickers JN, Hopkins WG. Quiet eye predicts goaltender success in
deflected ice hockey shots. Eur J Sport Sci. 2017 Feb;17(1):93-99. Epub 2016 Mar
7. PubMed [citation] PMID: 26949176

90. Wu Y, Zeng Y, Zhang L, Wang S, Wang D, Tan X, Zhu X, Zhang J, Zhang J. The role
of visual perception in action anticipation in basketball athletes. Neuroscience.
2013 May 1;237:29-41. doi: 10.1016/j.neuroscience.2013.01.048. Epub 2013 Feb 4.
PubMed [citation] PMID: 23384606

91. Vickers JN. Control of visual attention during the basketball free throw. Am J
Sports Med. 1996;24(6 Suppl):S93-7. No abstract available. PubMed [citation]
PMID: 8947439

92. Vine SJ, Wilson MR. The influence of quiet eye training and pressure on attention
and visuo-motor control. Acta Psychol (Amst). 2011 Mar;136(3):340-6. doi:
10.1016/j.actpsy.2010.12.008. Epub 2011 Jan 28. PubMed [citation] PMID: 21276584

93. Vickers JN. Visual control when aiming at a far target. J Exp Psychol Hum Percept
Perform. 1996 Apr;22(2):342-54. PubMed [citation] PMID: 8934848

94. Ward P, Williams AM, Bennett SJ. Visual search and biological motion perception
in tennis. Res Q Exerc Sport. 2002 Mar;73(1):107-12. No abstract available.
PubMed [citation] PMID: 11926480

95. Roca A, Ford PR, Memmert D. Creative decision making and visual search behavior
in skilled soccer players. PLoS One. 2018 Jul 10;13(7):e0199381. doi:
10.1371/journal.pone.0199381. eCollection 2018. PubMed [citation] PMID: 29990320,
PMCID: PMC6039007

96. McGuckian TB, Cole MH, Pepping GJ. A systematic review of the technology-based
assessment of visual perception and exploration behaviour in association
football. J Sports Sci. 2018 Apr;36(8):861-880. doi:
10.1080/02640414.2017.1344780. Epub 2017 Jun 26. Review. PubMed [citation] PMID:

97. Kredel R, Vater C, Klostermann A, Hossner EJ. Eye-Tracking Technology and the
Dynamics of Natural Gaze Behavior in Sports: A Systematic Review of 40 Years of
Research. Front Psychol. 2017 Oct 17;8:1845. doi: 10.3389/fpsyg.2017.01845.
eCollection 2017. PubMed [citation] PMID: 29089918, PMCID: PMC5651090

98. Murray NP, Hunfalvay M. A comparison of visual search strategies of elite and
non-elite tennis players through cluster analysis. J Sports Sci. 2017
Feb;35(3):241-246. Epub 2016 Mar 23. PubMed [citation] PMID: 27007168

99. Uchida Y, Mizuguchi N, Honda M, Kanosue K. Prediction of shot success for
basketball free throws: visual search strategy. Eur J Sport Sci.
2014;14(5):426-32. doi: 10.1080/17461391.2013.866166. Epub 2013 Dec 10. PubMed
[citation] PMID: 24319995

100. Roca A, Williams AM. Expertise and the Interaction between Different
Perceptual-Cognitive Skills: Implications for Testing and Training. Front
Psychol. 2016 May 25;7:792. doi: 10.3389/fpsyg.2016.00792. eCollection 2016. No
abstract available. PubMed [citation] PMID: 27252677, PMCID: PMC4879788

101. Williams AM, Singer RN, Frehlich SG. Quiet eye duration, expertise, and task
complexity in near and far aiming tasks. J Mot Behav. 2002 Jun;34(2):197-207.
PubMed [citation] PMID: 12057892

102. Babu RJ, Lillakas L, Irving EL. Dynamics of saccadic adaptation: differences
between athletes and nonathletes. Optom Vis Sci. 2005 Dec;82(12):1060-5. PubMed
[citation] PMID: 16357648

103. Geer I, Robertson KM. Measurement of central and peripheral dynamic visual acuity
thresholds during ocular pursuit of a moving target. Optom Vis Sci. 1993
Jul;70(7):552-60. PubMed [citation] PMID: 8355967

104. Brown B. Dynamic visual acuity, eye movements and peripheral acuity for moving
targets. Vision Res. 1972 Feb;12(2):305-21. No abstract available. PubMed
[citation] PMID: 5033692

105. Brown B. Resolution thresholds for moving targets at the fovea and in the
peripheral retina. Vision Res. 1972 Feb;12(2):293-304. No abstract available.
PubMed [citation] PMID: 5033691

106. Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R. Adaptive control of
saccades via internal feedback. J Neurosci. 2008 Mar 12;28(11):2804-13. doi:
10.1523/JNEUROSCI.5300-07.2008. PubMed [citation] PMID: 18337410, PMCID:

107. de Brouwer S, Yuksel D, Blohm G, Missal M, Lefèvre P. What triggers catch-up
saccades during visual tracking? J Neurophysiol. 2002 Mar;87(3):1646-50. PubMed
[citation] PMID: 11877535

108. Deveau J, Ozer DJ, Seitz AR. Improved vision and on-field performance in baseball
through perceptual learning. Curr Biol. 2014 Feb 17;24(4):R146-7. doi:
10.1016/j.cub.2014.01.004. No abstract available. PubMed [citation] PMID:
24556432, PMCID: PMC3932179

109. Diaz G, Cooper J, Rothkopf C, Hayhoe M. Saccades to future ball location reveal
memory-based prediction in a virtual-reality interception task. J Vis. 2013 Jan
16;13(1). pii: 20. doi: 10.1167/13.1.20. PubMed [citation] PMID: 23325347, PMCID:

110. Renshaw I, Davids K, Araújo D, Lucas A, Roberts WM, Newcombe DJ, Franks B.
Evaluating Weaknesses of “Perceptual-Cognitive Training” and “Brain Training”
Methods in Sport: An Ecological Dynamics Critique. Front Psychol. 2019 Jan
21;9:2468. doi: 10.3389/fpsyg.2018.02468. eCollection 2018. Review. PubMed
[citation] PMID: 30719015, PMCID: PMC6348252

111. Faubert J. Professional athletes have extraordinary skills for rapidly learning
complex and neutral dynamic visual scenes. Sci Rep. 2013;3:1154. doi:
10.1038/srep01154. Epub 2013 Jan 31. PubMed [citation] PMID: 23378899, PMCID:

112. Alves H, Voss MW, Boot WR, Deslandes A, Cossich V, Salles JI, Kramer AF.
Perceptual-cognitive expertise in elite volleyball players. Front Psychol. 2013
Mar 7;4:36. doi: 10.3389/fpsyg.2013.00036. eCollection 2013. PubMed [citation]
PMID: 23471100, PMCID: PMC3590639

113. Heppe H, Kohler A, Fleddermann MT, Zentgraf K. The Relationship between Expertise
in Sports, Visuospatial, and Basic Cognitive Skills. Front Psychol. 2016 Jun
17;7:904. doi: 10.3389/fpsyg.2016.00904. eCollection 2016. PubMed [citation]
PMID: 27378994, PMCID: PMC4911412

114. Fooken J, Yeo SH, Pai DK, Spering M. Eye movement accuracy determines natural
interception strategies. J Vis. 2016 Nov 1;16(14):1. doi: 10.1167/16.14.1. PubMed
[citation] PMID: 27802509

115. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17
Huijgen BC, Leemhuis S, Kok NM, Verburgh L, Oosterlaan J, Elferink-Gemser MT,
Visscher C.
PLoS ONE. 2015 Dec 11; 10(12): e0144580
PMC [article] PMCID: PMC4691195, PMID: 26657073, DOI: 10.1371/journal.pone.0144580

116. Distinct eye movement patterns enhance dynamic visual acuity.
Palidis DJ, Wyder-Hodge PA, Fooken J, Spering M.
PLoS ONE. 2017 Feb 10; 12(2): e0172061
PMC [article] PMCID: PMC5302791, PMID: 28187157, DOI: 10.1371/journal.pone.0172061

117. Ishigaki H, Miyao M. Differences in dynamic visual acuity between athletes and
nonathletes. Percept Mot Skills. 1993 Dec;77(3 Pt 1):835-9. PubMed [citation]
PMID: 8284163

118. Uchida Y, Kudoh D, Murakami A, Honda M, Kitazawa S. Origins of superior dynamic
visual acuity in baseball players: superior eye movements or superior image
processing. PLoS One. 2012;7(2):e31530. doi: 10.1371/journal.pone.0031530. Epub
2012 Feb 22. PubMed [citation] PMID: 22384033, PMCID: PMC3285166

119. Jacobs RJ. Visual resolution and contour interaction in the fovea and periphery.
Vision Res. 1979;19(11):1187-95. No abstract available. PubMed [citation] PMID:

120. Laby DM, Kirschen DG. The Refractive Error of Professional Baseball Players.
Optom Vis Sci. 2017 May;94(5):564-573. doi: 10.1097/OPX.0000000000001067. PubMed
[citation] PMID: 28430758

121. Laby DM, Rosenbaum AL, Kirschen DG, Davidson JL, Rosenbaum LJ, Strasser C,
Mellman MF. The visual function of professional baseball players. Am J
Ophthalmol. 1996 Oct;122(4):476-85. PubMed [citation] PMID: 8862043

122. Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements.
von Laßberg C, Beykirch KA, Mohler BJ, Bülthoff HH.
PLoS ONE. 2014 Apr 24; 9(4): e95450
PMC [article] PMCID: PMC3998959, PMID: 24763143, DOI: 10.1371/journal.pone.0095450

123. Mangine GT, Hoffman JR, Wells AJ, Gonzalez AM, Rogowski JP, Townsend JR, Jajtner
AR, Beyer KS, Bohner JD, Pruna GJ, Fragala MS, Stout JR. Visual tracking speed is
related to basketball-specific measures of performance in NBA players. J Strength
Cond Res. 2014 Sep;28(9):2406-14. doi: 10.1519/JSC.0000000000000550. PubMed
[citation] PMID: 24875429

124. Influence of sports expertise level on attention in multiple object tracking.
Qiu F, Pi Y, Liu K, Li X, Zhang J, Wu Y.
PeerJ. 2018 Sep 28; 6: e5732
PMC [article] PMCID: PMC6166630, PMID: 30280051, DOI: 10.7717/peerj.5732

125. Millslagle DG. Dynamic visual acuity and coincidence-anticipation timing by
experienced and inexperienced women players of fast pitch softball. Percept Mot
Skills. 2000 Apr;90(2):498-504. PubMed [citation] PMID: 10833746

126. Morris GS, Kreighbaum E. Dynamic visual acuity of varsity women volleyball and
basketball players. Res Q. 1977 May;48(2):480-3. No abstract available. PubMed
[citation] PMID: 267992

127. Moulder MJ, Qian J, Bedell HE. Motion deblurring during pursuit tracking improves
spatial-interval acuity. Vision Res. 2013 Apr 5;81:6-11. PubMed [citation] PMID:
23402872, PMCID: PMC3637418

128. Wimshurst ZL, Sowden PT, Cardinale M. Visual skills and playing positions of
Olympic field hockey players. Percept Mot Skills. 2012 Feb;114(1):204-16. PubMed
[citation] PMID: 22582689

129. Rouse MW, DeLand P, Christian R, Hawley J. A comparison study of dynamic visual
acuity between athletes and nonathletes. J Am Optom Assoc. 1988
Dec;59(12):946-50. PubMed [citation] PMID: 3209790

130. Spering M, Montagnini A. Do we track what we see? Common versus independent
processing for motion perception and smooth pursuit eye movements: a review.
Vision Res. 2011 Apr 22;51(8):836-52. doi: 10.1016/j.visres.2010.10.017. Epub
2010 Oct 20. Review. PubMed [citation] PMID: 20965208

131. Timmis MA, Piras A, van Paridon KN. Keep Your Eye on the Ball; the Impact of an
Anticipatory Fixation During Successful and Unsuccessful Soccer Penalty Kicks.
Front Psychol. 2018 Oct 31;9:2058. doi: 10.3389/fpsyg.2018.02058. eCollection
2018. PubMed [citation] PMID: 30429808, PMCID: PMC6220034

132. Spering M, Schütz AC, Braun DI, Gegenfurtner KR. Keep your eyes on the ball:
smooth pursuit eye movements enhance prediction of visual motion. J Neurophysiol.
2011 Apr;105(4):1756-67. doi: 10.1152/jn.00344.2010. Epub 2011 Feb 2. PubMed
[citation] PMID: 21289135

133. Elferink-Gemser MT, Faber IR, Visscher C, Hung TM, de Vries SJ, Nijhuis-Van der
Sanden MWG. Higher-level cognitive functions in Dutch elite and sub-elite table
tennis players. PLoS One. 2018 Nov 7;13(11):e0206151. doi:
10.1371/journal.pone.0206151. eCollection 2018. PubMed [citation] PMID: 30403711,
PMCID: PMC6221298

134. Kittel A, Larkin P, Elsworthy N, Spittle M. Using 360° virtual reality as a
decision-making assessment tool in sport. J Sci Med Sport. 2019
Sep;22(9):1049-1053. doi: 10.1016/j.jsams.2019.03.012. Epub 2019 Apr 5. PubMed
[citation] PMID: 30987883

135. Ishihara T, Kobayashi T, Kuroda Y, Mizuno M. Relationship between attention
shifting and tennis performance during singles matches. J Sports Med Phys
Fitness. 2018 Dec;58(12):1883-1888. doi: 10.23736/S0022-4707.18.08161-6. Epub
2018 Jan 4. PubMed [citation] PMID: 29308850

136. Engeroff T, Giesche F, Niederer D, Gerten S, Wilke J, Vogt L, Banzer W.
Explaining Upper or Lower Extremity Crossover Effects of Visuomotor Choice
Reaction Time Training. Percept Mot Skills. 2019 Aug;126(4):675-693. doi:
10.1177/0031512519841755. Epub 2019 Apr 30. PubMed [citation] PMID: 31039674

137. Owens CB, de Boer C, Gennari G, Broersen R, Pel JJ, Miller B, Clapp W, van der
Werf YD, De Zeeuw CI. Early Trajectory Prediction in Elite Athletes. Cerebellum.
2018 Dec;17(6):766-776. doi: 10.1007/s12311-018-0975-9. PubMed [citation] PMID:
30218394, PMCID: PMC6208842

138. Meng FW, Yao ZF, Chang EC, Chen YL. Team sport expertise shows superior
stimulus-driven visual attention and motor inhibition. PLoS One. 2019 May
15;14(5):e0217056. doi: 10.1371/journal.pone.0217056. eCollection 2019. PubMed
[citation] PMID: 31091297, PMCID: PMC6519903

139. Roh M, Lee E. Effects of gaze stability exercises on cognitive function, dynamic
postural ability, balance confidence, and subjective health status in old people
with mild cognitive impairment. J Exerc Rehabil. 2019 Apr 26;15(2):270-274. doi:
10.12965/jer.1938026.013. eCollection 2019 Apr. PubMed [citation] PMID: 31111012,
PMCID: PMC6509452

140. Piras A, Raffi M, Perazzolo M, Malagoli Lanzoni I, Squatrito S. Microsaccades and
interest areas during free-viewing sport task. J Sports Sci. 2019
May;37(9):980-987. doi: 10.1080/02640414.2017.1380893. Epub 2017 Sep 18. PubMed
[citation] PMID: 28922090

141. Hausegger T, Vater C, Hossner EJ. Peripheral Vision in Martial Arts Experts: The
Cost-Dependent Anchoring of Gaze. J Sport Exerc Psychol. 2019 Jun
1;41(3):137-145. doi: 10.1123/jsep.2018-0091. Epub 2019 Jun 2. PubMed [citation]
PMID: 31156024

142. Marshall B, Wright DJ, Holmes PS, Wood G. Combining Action Observation and Motor
Imagery Improves Eye-Hand Coordination during Novel Visuomotor Task Performance.
J Mot Behav. 2020;52(3):333-341. doi: 10.1080/00222895.2019.1626337. Epub 2019
Jun 11. PubMed [citation] PMID: 31185831

143. Vera J, Molina R, Cárdenas D, Redondo B, Jiménez R. Basketball free-throws
performance depends on the integrity of binocular vision. Eur J Sport Sci. 2020
Apr;20(3):407-414. doi: 10.1080/17461391.2019.1632385. Epub 2019 Jun 28. PubMed
[citation] PMID: 31195892

144. Iraji A, Deramus TP, Lewis N, Yaesoubi M, Stephen JM, Erhardt E, Belger A, Ford
JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner
JA, Vaidya JG, van Erp TGM, Calhoun VD. The spatial chronnectome reveals a
dynamic interplay between functional segregation and integration. Hum Brain Mapp.
2019 Jul;40(10):3058-3077. doi: 10.1002/hbm.24580. Epub 2019 Mar 18. PubMed
[citation] PMID: 30884018, PMCID: PMC6548674

145. Otte FW, Millar SK, Klatt S. How does the modern football goalkeeper train? – An
exploration of expert goalkeeper coaches’ skill training approaches. J Sports
Sci. 2020 Jun – Jun;38(11-12):1465-1473. doi: 10.1080/02640414.2019.1643202. Epub
2019 Jul 16. PubMed [citation] PMID: 31311425

146. Katsumata H. Attenuation of size illusion effect in dual-task conditions. Hum Mov
Sci. 2019 Oct;67:102497. doi: 10.1016/j.humov.2019.102497. Epub 2019 Jul 18.
PubMed [citation] PMID: 31326743

147. Hülsdünker T, Ostermann M, Mierau A. The Speed of Neural Visual Motion Perception
and Processing Determines the Visuomotor Reaction Time of Young Elite Table
Tennis Athletes. Front Behav Neurosci. 2019 Jul 19;13:165. doi:
10.3389/fnbeh.2019.00165. eCollection 2019. PubMed [citation] PMID: 31379535,
PMCID: PMC6659573

148. Hülsdünker T, Strüder HK, Mierau A. The athletes’ visuomotor system – Cortical
processes contributing to faster visuomotor reactions. Eur J Sport Sci. 2018
Aug;18(7):955-964. doi: 10.1080/17461391.2018.1468484. Epub 2018 May 8. Review.
PubMed [citation] PMID: 29738678

149. Hülsdünker T, Strüder HK, Mierau A. Visual Motion Processing Subserves Faster
Visuomotor Reaction in Badminton Players. Med Sci Sports Exerc. 2017
Jun;49(6):1097-1110. doi: 10.1249/MSS.0000000000001198. PubMed [citation] PMID:

150. Minoonejad H, Barati AH, Naderifar H, Heidari B, Kazemi AS, Lashay A. Effect of
four weeks of ocular-motor exercises on dynamic visual acuity and stability limit
of female basketball players. Gait Posture. 2019 Sep;73:286-290. doi:
10.1016/j.gaitpost.2019.06.022. Epub 2019 Jul 16. PubMed [citation] PMID:

151. Fleddermann MT, Heppe H, Zentgraf K. Off-Court Generic Perceptual-Cognitive
Training in Elite Volleyball Athletes: Task-Specific Effects and Levels of
Transfer. Front Psychol. 2019 Jul 24;10:1599. doi: 10.3389/fpsyg.2019.01599.
eCollection 2019. PubMed [citation] PMID: 31396123, PMCID: PMC6667634

152. Gantois P, Caputo Ferreira ME, Lima-Junior D, Nakamura FY, Batista GR, Fonseca
FS, Fortes LS. Effects of mental fatigue on passing decision-making performance
in professional soccer athletes. Eur J Sport Sci. 2020 May;20(4):534-543. doi:
10.1080/17461391.2019.1656781. Epub 2019 Sep 7. PubMed [citation] PMID: 31424354

153. Yokoi A, Diedrichsen J. Neural Organization of Hierarchical Motor Sequence
Representations in the Human Neocortex. Neuron. 2019 Sep 25;103(6):1178-1190.e7.
doi: 10.1016/j.neuron.2019.06.017. Epub 2019 Jul 22. PubMed [citation] PMID:

154. Vater C. How selective attention affects the detection of motion changes with
peripheral vision in MOT. Heliyon. 2019 Aug 13;5(8):e02282. doi:
10.1016/j.heliyon.2019.e02282. eCollection 2019 Aug. PubMed [citation] PMID:
31463394, PMCID: PMC6706584

155. Tan SJ, Kerr G, Sullivan JP, Peake JM. A Brief Review of the Application of
Neuroergonomics in Skilled Cognition During Expert Sports Performance. Front Hum
Neurosci. 2019 Aug 16;13:278. doi: 10.3389/fnhum.2019.00278. eCollection 2019.
PubMed [citation] PMID: 31474845, PMCID: PMC6706674

156. Michalski SC, Szpak A, Saredakis D, Ross TJ, Billinghurst M, Loetscher T. Getting
your game on: Using virtual reality to improve real table tennis skills. PLoS
One. 2019 Sep 10;14(9):e0222351. doi: 10.1371/journal.pone.0222351. eCollection
2019. PubMed [citation] PMID: 31504070, PMCID: PMC6736297

157. Laby DM. Case Report: Use of Sports and Performance Vision Training to Benefit a
Low Vision Patient’s Function. Optom Vis Sci. 2018 Sep;95(9):898-901. doi:
10.1097/OPX.0000000000001231. PubMed [citation] PMID: 29781873

158. Maeda RS, McGee SE, Marigold DS. Long-term retention and reconsolidation of a
visuomotor memory. Neurobiol Learn Mem. 2018 Nov;155:313-321. doi:
10.1016/j.nlm.2018.08.020. Epub 2018 Aug 31. PubMed [citation] PMID: 30172955

159. Zwierko T, Jedziniak W, Florkiewicz B, Stępiński M, Buryta R, Kostrzewa-Nowak D,
Nowak R, Popowczak M, Woźniak J. Oculomotor dynamics in skilled soccer players:
The effects of sport expertise and strenuous physical effort. Eur J Sport Sci.
2019 Jun;19(5):612-620. doi: 10.1080/17461391.2018.1538391. Epub 2018 Oct 31.
PubMed [citation] PMID: 30378462

160. The Efficiency of a Visual Skills Training Program on Visual Search Performance.
Krzepota J, Zwierko T, Puchalska-Niedbał L, Markiewicz M, Florkiewicz B, Lubiński
Journal of Human Kinetics. 2015 Jul 10; 46: 231-240
PMC [article] PMCID: PMC4519214, PMID: 26240666, DOI: 10.1515/hukin-2015-0051

161. Michalski SC, Szpak A, Loetscher T. Using Virtual Environments to Improve
Real-World Motor Skills in Sports: A Systematic Review. Front Psychol. 2019 Sep
20;10:2159. doi: 10.3389/fpsyg.2019.02159. eCollection 2019. PubMed [citation]
PMID: 31620063, PMCID: PMC6763583

162. Vater C, Luginbühl S, Magnaguagno L. Testing the functionality of peripheral
vision in a mixed-methods football field study. J Sports Sci. 2019
Dec;37(24):2789-2797. doi: 10.1080/02640414.2019.1664100. Epub 2019 Sep 6. PubMed
[citation] PMID: 31631809

163. Brenton J, Müller S, Harbaugh AG. Visual-perceptual training with motor practice
of the observed movement pattern improves anticipation in emerging expert cricket
batsmen. J Sports Sci. 2019 Sep;37(18):2114-2121. doi:
10.1080/02640414.2019.1621510. Epub 2019 May 24. PubMed [citation] PMID: 31126220

164. Hüttermann S, Ford PR, Williams AM, Varga M, Smeeton NJ. Attention, Perception,
and Action in a Simulated Decision-Making Task. J Sport Exerc Psychol. 2019 Aug
1;41(4):230-241. doi: 10.1123/jsep.2018-0177. PubMed [citation] PMID: 31319400

165. Burris K, Liu S, Appelbaum L. Visual-motor expertise in athletes: Insights from
semiparametric modelling of 2317 athletes tested on the Nike SPARQ Sensory
Station. J Sports Sci. 2020 Feb;38(3):320-329. doi:
10.1080/02640414.2019.1698090. Epub 2019 Nov 29. PubMed [citation] PMID: 31782684

166. Schumacher N, Schmidt M, Reer R, Braumann KM. Peripheral Vision Tests in Sports:
Training Effects and Reliability of Peripheral Perception Test. Int J Environ Res
Public Health. 2019 Dec 9;16(24). pii: E5001. doi: 10.3390/ijerph16245001. PubMed
[citation] PMID: 31835309, PMCID: PMC6950114

167. Krizman J, Lindley T, Bonacina S, Colegrove D, White-Schwoch T, Kraus N. Play
Sports for a Quieter Brain: Evidence From Division I Collegiate Athletes. Sports
Health. 2020 Mar/Apr;12(2):154-158. doi: 10.1177/1941738119892275. Epub 2019 Dec
9. PubMed [citation] PMID: 31813316, PMCID: PMC7040943

168. Przednowek K, Śliż M, Lenik J, Dziadek B, Cieszkowski S, Lenik P, Kopeć D, Wardak
K, Przednowek KH. Psychomotor Abilities of Professional Handball Players. Int J
Environ Res Public Health. 2019 May 30;16(11). pii: E1909. doi:
10.3390/ijerph16111909. PubMed [citation] PMID: 31151149, PMCID: PMC6603509

169. Hülsdünker T, Strüder HK, Mierau A. Visual but not motor processes predict simple
visuomotor reaction time of badminton players. Eur J Sport Sci. 2018
Mar;18(2):190-200. doi: 10.1080/17461391.2017.1395912. Epub 2017 Nov 12. PubMed
[citation] PMID: 29129160

170. Hülsdünker T, Strüder HK, Mierau A. Neural Correlates of Expert Visuomotor
Performance in Badminton Players. Med Sci Sports Exerc. 2016
Nov;48(11):2125-2134. PubMed [citation] PMID: 27327022

171. Romeas T, Chaumillon R, Labbé D, Faubert J. Combining 3D-MOT With Sport
Decision-Making for Perceptual-Cognitive Training in Virtual Reality. Percept Mot
Skills. 2019 Oct;126(5):922-948. doi: 10.1177/0031512519860286. Epub 2019 Jul 4.
PubMed [citation] PMID: 31272277

172. Brenton J, Müller S, Dempsey A. Visual-perceptual training with acquisition of
the observed motor pattern contributes to greater improvement of visual
anticipation. J Exp Psychol Appl. 2019 Sep;25(3):333-342. doi:
10.1037/xap0000208. Epub 2019 Jan 28. PubMed [citation] PMID: 30688501

173. Zhu XJ, Li YH, Liu LQ. Functional significance of stereopsis in professional
table-tennis players. J Sports Med Phys Fitness. 2019 Nov;59(11):1798-1804. doi:
10.23736/S0022-4707.19.09300-9. Epub 2019 Feb 5. PubMed [citation] PMID: 30722652

174. Wilke J, Vogel O, Ungricht S. Can we measure perceptual-cognitive function during
athletic movement? A framework for and reliability of a sports-related testing
battery. Phys Ther Sport. 2020 May;43:120-126. doi: 10.1016/j.ptsp.2020.02.016.
Epub 2020 Feb 29. PubMed [citation] PMID: 32145687

175. Rojas Ferrer CD, Shishido H, Kitahara I, Kameda Y. Read-the-game: System for
skill-based visual exploratory activity assessment with a full body virtual
reality soccer simulation. PLoS One. 2020 Mar 17;15(3):e0230042. doi:
10.1371/journal.pone.0230042. eCollection 2020. PubMed [citation] PMID: 32182621,
PMCID: PMC7077991

176. Song YH, Ha SM, Yook JS, Ha MS. Interactive Improvements of Visual and Auditory
Function for Enhancing Performance in Youth Soccer Players. Int J Environ Res
Public Health. 2019 Dec 5;16(24). pii: E4909. doi: 10.3390/ijerph16244909. PubMed
[citation] PMID: 31817313, PMCID: PMC6949993

177. Lee Y, Kumar YS, Lee D, Kim J, Kim J, Yoo J, Kwon S. An Extended Method for
Saccadic Eye Movement Measurements Using a Head-Mounted Display. Healthcare
(Basel). 2020 Apr 21;8(2). pii: E104. doi: 10.3390/healthcare8020104. PubMed
[citation] PMID: 32326268, PMCID: PMC7349530

178. Hicheur H, Chauvin A, Cavin V, Fuchslocher J, Tschopp M, Taube W.
Augmented-Feedback Training Improves Cognitive Motor Performance of Soccer
Players. Med Sci Sports Exerc. 2020 Jan;52(1):141-152. doi:
10.1249/MSS.0000000000002118. PubMed [citation] PMID: 31425382

179. Hülsdünker T, Ostermann M, Mierau A. Motion-Onset Visual Potentials Evoked in a
Sport-Specific Visuomotor Reaction Task. J Sport Exerc Psychol. 2020 Jul 14:1-12.
doi: 10.1123/jsep.2019-0255. [Epub ahead of print] PubMed [citation] PMID:

180. Kroll M, Preuss J, Ness BM, Dolny M, Louder T. Effect of stroboscopic vision on
depth jump performance in female NCAA Division I volleyball athletes. Sports
Biomech. 2020 Jun 8:1-11. doi: 10.1080/14763141.2020.1773917. [Epub ahead of
print] PubMed [citation] PMID: 32510290

181. Fooken J, Spering M. Eye movements as a readout of sensorimotor decision
processes. J Neurophysiol. 2020 Apr 1;123(4):1439-1447. doi:
10.1152/jn.00622.2019. Epub 2020 Mar 11. PubMed [citation] PMID: 32159423, PMCID:

182. Fooken J, Spering M. Decoding go/no-go decisions from eye movements. J Vis. 2019
Feb 1;19(2):5. doi: 10.1167/19.2.5. PubMed [citation] PMID: 30735563

183. de-Oliveira LA, Matos MV, Fernandes IGS, Nascimento DA, da Silva-Grigoletto ME.
Test-Retest Reliability of a Visual-Cognitive Technology (BlazePodâ„¢) to Measure
Response Time. J Sports Sci Med. 2021 Mar 1;20(1):179-180. doi:
10.52082/jssm.2021.179. eCollection 2021 Mar. No abstract available. PubMed
[citation] PMID: 33708001, PMCID: PMC7919356